
Quantum Transport Cal
ulations Using Periodi
 Boundary ConditionsLin-Wang WangComputational Resear
h Division, Lawren
e Berkeley National Laboratory, Berkeley, CA 94720(Dated: June 14, 2004)An eÆ
ient new method is presented to 
al
ulate the quantum transports using periodi
 boundary
onditions. This method allows the use of 
onventional ground state ab initio programs without big
hanges. The 
omputational e�ort is only a few times of a normal ground state 
al
ulation, thus itmakes a

urate quantum transport 
al
ulations for large systems possible.PACS numbers: 71.15.-m, 73.63.-b, 73.22.-fQuantum transport for mole
ules, nanowires, and nan-odevi
es is a fast growing resear
h area in both experi-ment and theory, with the potential of repla
ing the 
ur-rent Si based te
hnology after the Moor's law rea
hes itslimit in about 15 years. In the theoreti
al ballisti
 trans-port 
al
ulations, a key step is to 
al
ulate the 
urrentvia the Landauer formula:I = 2eh Z �R�L Xn Tn(E)dE; (1)where �L and �R are left and right ele
trode Fermi en-ergies (assuming the 
urrent 
ows from right to left in zdire
tion), and Tn(E) is the transmission 
oeÆ
ient forthe nth right hand ele
trode 
hannel (band) at energyE. There are two major ways to 
al
ulate Tn(E). Oneis to use the Green's fun
tion G(r; r0; E) of the system.However sin
e G is a double variable fun
tion, 
ompu-tationally this approa
h 
an be quite expensive, thus itis mostly used for lo
alized basis set methods [1℄. Theother way to 
al
ulate Tn(E) is to solve the followings
attering states: H s
(r) = E s
(r) (2)and for z !1(�1): s
(r) =Xn [AR(L)n �R(L)�n (r) +BR(L)n �R(L)n (r)℄; (3)with 
onditions: ARn = 0 ex
ept ARm = 1 for one m,and BLn = 0 (assuming dER(L)n (k)=dk > 0). In above,H is the single parti
le Hamiltonian, and �R(L)n (r) =un;kn(r)exp(ikR(L)n z) are right going running waves inthe the right(R) and left(L) ele
trodes, and �R(L)�nare the left going running waves. ER(L)n (kR(L)n ) =E are the ele
trode band stru
ture. The transmis-sion 
oeÆ
ient for 
hannel m 
an be 
al
ulated asTm(E) = [Pn jALn j2(dELn (k)=dk)℄=(dERm(k)=dk), and there
e
tion 
oeÆ
ient 
an be 
al
ulated as Rm(E) =[Pn jBRn j2(dERn (k)=dk)℄=(dERm(k)=dk). Transfer matrixmethod [2, 3℄ and the Lippmann-S
hwinger equation [5℄have been used to solve Eqs(2),(3). Unfortunately, the

transfer matrix method is rather 
ompli
ated and 
om-putationally expensive to deal with the nonlo
al pseu-dopotentials [3℄ and it is often plagued by the numeri
alinstability due to the evanes
ent states in a multi-
hannelele
trode [4℄. On the other hand, the use of Lippmann-S
hwinger equation [5℄ requires the solution of a linearequation of the dimension of the full system, and it alsoneeds the Green's fun
tion of the two ele
trode systemunder a potential bias. As a result, 
urrently this ap-proa
h is only used for jellium ele
trode model and rela-tively small systems. Overall, 
ompared to the more ma-tured ground state 
al
ulations, all the 
urrent methodsfor transport 
al
ulations are 
ompli
ated and 
omputa-tionally expensive, and they 
an only be used to 
al
ulaterelatively small systems although there is a strong needto study the transports of large mole
ules and nanostru
-tures. Here, we present a new and simple approa
h whi
hmakes the transport 
al
ulation similar to the groundstate 
al
ulation. In this approa
h, 
onventional periodi
super
ell methods and a spe
ially designed perturbativeapproa
h are used to solve Eqs(2),(3). This allows usto use modern ab initio total energy programs withoutmu
h 
hange. The 
omputational e�ort is similar to anormal ground state lo
al density approximation (LDA)
al
ulation, hen
e it opens the door for quantum trans-port studies for large systems.
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FIG. 1: A s
hemati
 view of the 
al
ulated system.To demonstrate our method, we have 
hosen a benzenemole
ule 
onne
ted by two Cu quantum wires as shownin Fig.1. This system is 
hosen sin
e the 
ondu
tivityof the benzene mole
ule is well studied [5, 6℄ and similar



2quantum wires have been used as ele
trodes in previousquantum transport 
al
ulations [7℄. Two hydrogen atomsat the two ends of the benzene mole
ule are repla
edby two sulfur atoms, whi
h are bonded to two 
entralCu atoms at the ele
trode. The atomi
 positions of themole
ule are relaxed at the zero voltage bias under LDA
al
ulation. We have used norm 
onserving pseudopo-tentials and 30 Ryd planewave 
uto� with a standardplanewave LDA program [8℄. We have in
luded 5 and 6unit 
ells in the left and right ele
trodes respe
tively, andthey are 
onne
ted at boundary B in Fig.1 by periodi
boundary 
ondition. The x, y dimensions of the super-
ell are 3 times the width of the Cu wire to avoid possibleneighbore-neighbore intera
tions. After the Kohn-Shamsingle parti
le potential V0(r) is obtained from a LDAself
onsistent 
al
ulation at the zero bias, we have addeda potential V=2sin(�z=L0) in the 
entral region of themole
ule and shifted the rest of the right (left) ele
trodeby V=2 (�V=2) to get the potential VV (r) for a bias V sys-tem. Although a self
onsistent treatment 
an be a
hievedstraight forwardly under the 
urrent approa
h [sin
e thes
attering states of Eq(2) will be 
al
ulated℄, the 
urrentnonself
onsistent treatment for �nite bias V is suÆ
ientin illustrating the new methodology. Note that, there isa jump of VV (r) at the boundary B, but that is not aproblem in our numeri
al 
al
ulations.
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Γ X’kz (   /a)πFIG. 2: The band stru
ture of the ele
trode. Ea
h 
ontinuousline from � to X 0 is denoted as one band. The zero is theele
trode Fermi energy. The 
rosses are the kRn points, seetext for details.Figure 2 shows the band stru
tures En(kz) of the quan-tum wire ele
trode. There are 9 Cu atoms in ea
h unit
ell of the ele
trode. To simplify our 
al
ulation andanalysis, we did not in
lude the 3d ele
trons in our pseu-dopotential. Although this will introdu
e a signi�
anterror in the ele
trode total energy, the ele
troni
 stru
-ture near the Fermi surfa
e and the related transportproperties are inta
t. However, for bias larger than 2 V,our ele
trode should be 
onsidered as a model ele
trodedue to the la
k of Cu 3d ele
trons.To solve the s
attering states of Eqs(2),(3), we �rst
al
ulate the eigenstates f i(r), Eig of the periodi
 su-per
ell under VV (r) with a Kz point (e.g, Kz = �=2Lz,where Lz is the length of the super
ell and this Kz

is not the kz of the ele
trode as in Fig.2) using ourstandard LDA program [8℄. Let's �rst assume that,using some methods, we 
an generate l degeneratedstates  i;(l)(r) they all satisfy the S
hrodinger's equa-tion H i;(l) = Ei i;(l) (however, for our purpose, thisequation needs only to be satis�ed within the interior ofthe super
ell, not near the boundary B of Fig.1). Theidea is to use a linear 
ombination of these states to
onstru
t the s
attering states of Eq(2). First, withinthe R(L) ele
trode,  i;(l)(r) 
an be de
omposed into theele
trode states �R(L)n (r) just as in Eq(3). From a givenEi, the available n and kR(L)n 
an be found from Fig.2,or say: En(kR(L)n ) + �R(L) = Ei. The 
orresponding�R(L)n is then generated by numeri
al interpolations frompre-
al
ulated ele
trode states. The expansion 
oeÆ-
ients AR(L)n (i; l), BR(L)n (i; l) for wavefun
tion  i;(l) 
anbe easily 
al
ulated from the fun
tional produ
ts like:R
  i;(l)��nd3r and R
 �m��nd3r, where 
 is one ele
trodeunit 
ell at the middle of the ele
trodes as shown in Fig.1.We found that, after in
luding the possible evanes
entstates [9℄, this expansion typi
ally 
aptures more than99:99% of the weight of the original  i;(l). The next stepis to make a linear 
ombination of  i;(l) to get the s
at-tering state  i;s
 of Eq(2): i;s
 = Pl Cl i;(l) (4)= PnPl[ClAR(L)n (i; l)��n(r) + ClBR(L)n (i; l)�n(r)℄;here the se
ond equation and the R and L are for r withinthe right and left ele
trodes respe
tively. Note that, dueto the use of super
ell Kz point and both  i and  �i areused as  i;(l),  i;s
 is no longer periodi
 at the super
ellboundary B. To make  i;s
 in Eq(4) as one s
atteringstate of Eq(3), we need to make it satisfy the boundary
onditions of Eq(3):ARn6=m = 0, BLn = 0, by sele
ting Cl.In order to have a solution for Cl, we need N indepen-dent  i;(l) (l = 1; N), if there are N nonzero 
ontributingele
trode states n in Eq(4) [
ounting both the left andright ele
trodes, but �n and ��n are 
ounted as one℄.Noti
e that, sin
e both  i(r) and  �i (r) satisfy theS
hrodinger's equation H = Ei , for systems withonly a single 
hannel (N=2), the eigen state  i(r) itselfis enough to 
onstru
t the s
attering states  i;s
 fromEq(4). So, the main task here is for multi-
hannel 
ases.In our example, from Fig.2 we see that for a given energyEi, we 
ould have 4-5 
hannels. To get the N degener-ated  i;(l), we will use a perturbative approa
h. First,we will 
onstru
t Wm(r) = um;�(r) (the k = 0 mth ele
-trode state) when z is within the last unit 
ell of the rightele
trode near boundary B of Fig.1, and Wm(r) = 0 forall the other z (see Fig.1). We will add �jWm >< Wmjas a perturbation in the original H , and solve the follow-ing eigenstate equation using our standard LDA program(e.g, using 
onjugate gradient method):H 0i;m + � < Wmj 0i;m > Wm = (Ei +�Ei;m) 0i;m: (5)



3Here � is a very small number, hen
e �Ei;m and � i;m � 0i;m �  i are both small. Suppose we have solved theabove equations for two di�erent m's: m1 and m2. Thenwe 
an 
onstru
t  i;(l) = F1� i;m1 + F2� i;m2 , withF1�Ei;m1 + F2�Ei;m2 = 0. After dropping the se
ondorder terms �Ei;m1;2� i;m1;2 we have:H i;(l) + � Xj=1;2Fj < Wmj j 0i;mj > Wmj = Ei i;(l) (6)Noti
e that the Wmj terms are nonzero only nearthe boundary B, so for all the other pla
es, we haveH i;(l) = Ei i;(l). Thus,  i;(l) are the wavefun
tionswe needed. In the simple 
ases, when there are N totalele
trode states �R(L)n with nonzero 
omponents in theexpansion of  i(r) in Eq(4), there will be N/2 right ele
-trode states �Rn . Then the perturbations by the relatedN/2 Wm states (whi
h have the same 
hara
teristi
s and
ross se
tion symmetries as �Rn ) will introdu
e N/2 inde-pedent perturbative wavefun
tion 
hanges � i;m. These� i;m will generate (N=2 � 1) independent  i;(l) states(besides the original  i). Thus, the total number of  i;(l)states (
ounting also  �i;(l)) is just N, the exa
t number weneed to 
onstru
t the s
attering state  i;s
 from Eq(4).This argument remains true when there are evanes
entstates or the number of ele
trode states in the left andright ele
trodes are not the same. Thus, using this pro-
edure, we are guaranteed that there will be enough  i;(l)states for a given  i to generate a few 
orresponding s
at-tering states  i;s
.From the super
ell eigenstates f i(r); Eig, we 
an gen-erate a set of fkRn g from En(kRn )+�R = Ei. These fkRn gare shown in Fig.2 as the 
rosses for a 1V bias 
ase (usingall the  i(r) with Ei between the two horizontal arrowsin Fig.2). As 
an be des
ribed by a phase a

umulationmodel[10℄, on ea
h band, these kRn have roughly equal dis-tan
es and their total number roughly equals the numberof ele
trode unit 
ells. We have typi
ally used 6 � pointele
trode states as Wm in Eq(5) starting from the low-est band as annotated in Fig.2. This means we have tosolve f 0i;mg of Eq(5) 6 times using f ig as the initialwavefun
tions (Noti
e that, this number 6 is roughly thenumber of 
hannels in the problem. The same prefa
toris needed in the 
al
ulations of other methods like thetransfer matrix or Lippmann-S
hwinger equation). Af-ter f 0i;mg are 
al
ulated, using Eq(4), we 
an 
onstru
ta s
attering state from ea
h of these kRn shown in Fig.2.Two of these 
onstru
ted s
attering states are shown inFig.3. Noti
e that the dash lines arePl Cl i;(l) of Eq(4),while the solid lines are the ele
trode state de
omposi-tions [the se
ond line of the Eq(4)℄. Within the ele
trode,the ele
trode state de
omposition gives a very a

uratedes
ription of the total wavefun
tion. From these s
at-tering states, the transmission 
oeÆ
ients Tm(Ei) 
an be
al
ulated, and are shown in Fig.4 as the symbols. The
al
ulated Tm(Ei) +Rm(Ei) is typi
ally very 
lose to 1,indi
ating the numeri
al stability of the 
urrent method.
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FIG. 3: The 
onstru
ted s
attering states from Eq(4). Thedashed and solid lines 
orrespond to the �rst and se
ond linesof Eq(4) respe
tively. T is the transmission 
oeÆ
ient, E isthe eigen energy, and band number indi
ate the n of �n inEq(4). The bias of the system is 1V.
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kz (   /a)πFIG. 4: The 
al
ulated transmission 
oeÆ
ients Tn(kRn ) (sym-bols) and �tted smooth 
urves fn(k) (lines) for di�erent bandsof the ele
trode. The bias of the system is 1V.Noti
e that, unlike the other approa
hes dis
ussed be-fore where the s
attering states of arbitrary energy E
an be solved, here only the s
attering states of energyfEig are 
al
ulated. This translates into �nite numberof fkRn g points as shown in Fig.2 and Fig.4. In Eq(1),we need all the energies between �L and �R. This isan 
omplete analogy with the k-point integration prob-lem in 
onventional ground state bulk 
al
ulation [theenergy integral in Eq(1) 
an also be 
hanged into a k-point integral of the ele
trode band stru
ture of Fig.2℄.Thus, similar to the 
onventional bulk 
al
ulations, here



4we will use an interpolation s
heme to 
arry out the inte-gral in Eq(1). First, if the number of fkRn g is not enoughin Fig.4, we 
an 
hoose a di�erent super
ellKz in our su-per
ell 
al
ulations (or 
hange the potential VV (r) nearboundary B), and repeat the above pro
edure. That willgive us more fEig and fkRn g points. In our system, we�nd one Kz 
al
ulation is suÆ
ient. We have used asmooth 
urve fn(k) to interpolate the ln(Tn(kRn )) pointsshown in Fig.4. More spe
i�
ally, we have minimized:PkRn jln(Tn(kRn ))�fn(kRn )j2+
 R jd2fn(k)=dk2j2dk, with
 � 1. Numeri
ally, this 
orresponds to a simple linearequation with dis
retized k points. The resulting 
urve isshown in Fig.4 for the 1V bias 
ase. Using these fn(k), we
an 
al
ulate the total transmission T (E) = Pn Tn(E)of the system. The results are shown in Fig.5 for di�er-ent biases. We see that T (E) is in
uen
ed strongly bytwo fa
tors. One is the relative energy levels between theele
trode states and the mole
ule states. When the biasin
reases, the mole
ular levels drop relative to the rightele
trode state levels. As a result, the magnitude of thetransmission de
reases near the region of -3 eV. Anotherfa
tor is the band stru
ture of the ele
trode. There is awell shape of T (E) near -0.3 eV. This is 
aused by bandgaps of the 2,3 bands at the X 0 point in Fig.2. The T (E)also shows a big drop at -3.3 eV. This is due to the endof 2,3 bands at the � point.
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FIG. 5: The 
al
ulated total transmission 
oeÆ
ients T (E)(whi
h 
an be larger than 1) for di�erent biases. The zero isthe right ele
trode Fermi energy. For a given bias V, there arenet right to left 
urrent 
ow only within the [�V; 0℄ energywindow.After T (E)'s of Fig.5 are obtained, a simple energyintegration between -V to 0 will give us the total 
ur-rent I . The resulting I(V ), and the 
ondu
tan
e dI=dV

are shown in Fig.6. We do see the well known peak anddip for this system in the 
ondu
tan
e around 2V. Our
al
ulated peak and dip positions of 1.8V and 2.3V 
or-responds well with the experimental results of 1.4V and2.4V [6℄, and this agreement is better than previously 
al-
ulated results [5℄. We also see the marks of the ele
trodeele
troni
 stru
tures. Near 0.3V, the 
ondu
tan
e showsa well shape, again due to the band gaps of 2,3 bandsat the X 0 point. Above 3.3V, we see a big drop, thenthe negative 
ondu
tan
e. The drop is due to the end ofthe 2,3 bands at the � points, and the negative 
ondu
-tan
e is be
ause the 
ondu
ting ele
trode levels (energywindow) are moving away from the 
ondu
ting mole
u-lar levels. Here we see that, the ele
troni
 stru
ture ofthe ele
trode is extremely important in determining theoverall 
ondu
tan
e of the system.
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al
ulated I-V 
urve and the 
orresponding 
on-du
tan
e. G0 = 2e=h = 77�s.In summary, we have presented a simple and numeri-
ally stable s
heme to 
al
ulate the quantum transport.Within this s
heme, the 
onventional periodi
 super
ellsand ground state ab initio programs 
an be used with-out mu
h 
hange. The 
omputational e�ort is only a fewtimes of a 
onventional ground state 
al
ulation. Thispromised quantum transport 
al
ulations for mu
h largersystems whi
h 
annot be ta
kled by othe methods. Theimplementation of this method is simple and straight for-ward based on any 
onventional ground state ab initioprograms.This work was supported by U.S. Department of En-ergy under Contra
t No. DE-AC03-76SF00098. Thisresear
h used the resour
es of the National Energy Re-sear
h S
ienti�
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e 278, 252 (1997).[7℄ C. Roland, V. Meunier, B. Larade, H. Guo, Phys. Rev.B 66, 35332 (2002).[8℄ http://
rd.lbl.gov/ linwang/PEtot/PEtot.html[9℄ When the energy Ei is 
lose to an extremum of a bandenergy (e.g, at the � and X 0 points, or inside an anti-
rossing band gap of Fig.2), an evanes
ent state mightexist at the middle ele
trode 
ell 
 where the de
ompo-sition is 
al
ulated. These evanes
ent states 
ome fromthe 
omplex k-point band stru
ture of the ele
trode [see:Y.C. Chang, Phys. Rev. B 25, 605 (1982)℄. If the 
al-

ulated ele
trode is very long, these evanes
ent statesshould have de
ayed to zero in the middle of the ele
-trode. But in pra
ti
e, and espe
ially when the energy is
lose to the extrema, these evanes
ent states 
an have sig-ni�
ant 
ontributions. We have used un(km)exp(ikmz) atthose extrema km to approximate the evanes
ent states,and in
lude them as �n(r) in the de
omposition of �i;(l).Note that, these evanes
ent states 
arry no 
urrents sin
edEn(k)=dkjk=km = 0.[10℄ N.V. Smith, N.B. Brookes, Y. Chang, and P.D. Johnson,Phys. Rev. B 49, 332 (1994).


